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We study the Olami-Feder-Christensen model with quenched disorder in the coupling parameter �. In
contrast to an earlier study by Mousseau �Phys. Rev. Lett. 77, 968 �1996��, we do not find a phase diagram
with several phase transitions, but continuous crossovers from one type of behavior to another. The crossover
behavior is determined by the ratio of three length scales, which are the system size, the penetration depth of
the boundary layer, and the correlation length introduced by the disorder.
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The Olami-Feder-Christensen �OFC� earthquake model
�1� is the prime example for a supposedly self-organized
critical yet nonconservative model. Systems are said to be
self-organized critical �SOC� if they are slowly driven and
have avalanchelike dissipation events, the size distribution of
which is a power law. An important characteristic of the OFC
model is that the degree of dissipation can be tuned continu-
ously by changing the coupling parameter �. Despite the
simplicity of its dynamical rules, the OFC model shows a
variety of interesting features that are unknown in equilib-
rium physics and appear to be crucial for generating the ap-
parent critical �or almost critical� behavior. Among these fea-
tures are a marginal synchronization of neighboring sites
driven by the open boundary conditions �2�, and a qualitative
difference between system-wide earthquakes and smaller
earthquakes �3�. The OFC model can easily be modified, and
several versions with slightly different updating rules exist,
which are also relevant for other fields of research �4,5�.
Small changes in the model rules, such as replacing open
boundary conditions with periodic boundary conditions �6�,
destroy the SOC behavior.

The OFC model originated by a simplification of the
spring-block model by Burridge and Knopoff �7�. To each
site of a square lattice we assign a continuous variable
zij � �0,1� that represents the local energy. Starting with a
random initial configuration taken from a flat distribution,
the value z of all sites is increased at a uniform rate until a
site ij reaches the threshold value zt=1. This site is then said
to topple, which means that the site is reset to zero and an
energy �zij is passed to every nearest neighbor. If this causes
a neighbor to exceed the threshold, the neighbor topples also,
and the avalanche continues until all zkl�1. Then the uni-
form increase resumes. The number of topplings defines the
size s of an avalanche or ‘‘earthquake.’’ The coupling param-
eter � can take on values in �0,0.25�. Smaller � means more
dissipation, and �=0.25 corresponds to the conservative
case. � is the only parameter of the model, apart from the
system size L, the edge length of the square lattice. Except
for the initial condition, the model is deterministic. The
model has open boundary conditions, i.e., sites at the bound-
ary receive energy only from three or two neighbors and
topple therefore on average less often than sites in the inte-
rior, which leads to the formation of “patches” of sites with a
similar energy. This patch formation proceeds from the
boundaries inward �2,8�. There has been no agreement in the
literature as to whether the model is indeed critical for all

values of the coupling or only in the conservative case
�9–11�. Due to the dynamics of the model, there occur ava-
lanches of all sizes; the mechanisms producing these ava-
lanches are different on different scales, though. Large ava-
lanches are mainly patch-wide avalanches, while smaller
avalanches occur within patches and constitute a series of
foreshocks or aftershocks �12�. Also, avalanches at different
distance from the boundaries have different sizes. A thorough
numerical and analytical study in �13� showed finally that the
observed “power laws” are dirty power laws, which appear
like power laws over a wide range of parameters and over a
few decades of avalanche sizes, while the “true” analytical
form is no power law.

In this paper, we consider the effect of noise on the OFC
model. In one of the first publications on the OFC model, it
was found that the addition of small random energy packages
to every toppled site does not change the exponents or the
cutoff of the distributions �1�. In contrast, quenched disorder
in the threshold values destroys criticality, changing the size
distribution of avalanches to an exponentially decaying func-
tion �14�. It was concluded that disorder introduces a second
length scale in the system, apart from the system size. Ceva
addressed the stability against small lattice defects by chang-
ing the coupling locally to �d�� for some sites. For not too
many defects, criticality appeared to be preserved, and the
obtained power laws interpolate between the corresponding
undisturbed systems �15,16�. Quenched disorder in the cou-
pling constant at all sites was discussed in �17�, which is the
version we discuss in the following.

To each site ij, we assign a value �ij =�+�ij with �ij
being a random number chosen from the interval �−� ,��.
Thus, the model now contains a second parameter �. Mous-
seau �17�, who introduced this version of the OFC model,
found that for small �but not too small� values of �, the entire
system synchronizes, apart from a very narrow boundary
layer. This separation leads to only small and system-wide
avalanches. For larger values of �, the avalanche-size distri-
bution looks again like a power law, while for even larger
noise the avalanche-size distribution decays exponentially.
The parameter regions where these four “phases” �which we
call more appropriately “regions”� are found are indicated in
the phase diagram, Fig. 1. Mousseau found that the transition
from SOC to synchronization �from I to II� and back to SOC
�from II to III� is relatively sharp, while the last transition
�from III to IV� is smooth.

We will argue in the following that all the apparent phase
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transitions are in fact smooth transitions due to the fact that
the relative size of three different relevant scales changes as
the parameters change. We begin by discussing the depen-
dence of the avalanche-size distribution on the strength of
the disorder, on the system size, and on the boundary condi-
tions. We used the efficient algorithm introduced in �13�,
which implies that we can study only system sizes L that are
a power of 2. If not stated otherwise, the parameters L and �
are 64 and 0.11, so that increasing � from 0.002 to 0.03 leads
us to all four regions in the phase diagram by Mousseau �see
Fig. 1�.

Figure 2 shows the avalanche-size distribution for fixed
�=0.11 and varying �. For �=0.002, the size distribution
resembles a power law, which is characteristic of the SOC
regime, but it has a small peak for large s, which indicates
the beginning of the transition to synchronization. The next
three curves �for 0.004���0.016� contain only small ava-
lanches and avalanches of the order of the system size, and
they belong therefore to region II. For �=0.018 and 0.022,
there appears to be again a power law �region III�, while for
even larger � the avalanche-size distribution decays rapidly,
and the system is therefore in region IV. All three transitions
thus occur at the parameter values indicated in the phase
diagram Fig. 1. The system size chosen in our simulations
�L=64� is not far from that chosen by Mousseau �L=50�.

Next, we point out that the transitions between the differ-
ent regions depend on the system size. Mousseau found al-
ready that the boundary between the SOC and the synchro-
nized phase �between I an II� moves downward in the phase
diagram with increasing system size. Figure 3 �left� shows
that the transitions between regions II, III, and IV must also

move downward with increasing system size. As L is in-
creased for fixed � and �, the shape of the curves changes
from that of region II to that of regions III and IV: The first
curves �L=32� are characteristic of region II �close to the
boundary to I�. The other curves �L=64 and 128� show the
shape characteristic of regions III and IV. The cutoff hardly
increases from L=64 to 128, indicating that the avalanches
become less dependent on the system size when L is larger.
We found generally that deep in region IV the avalanche-size
distribution does not change at all when the system size is
increased further. If the transitions between the different re-
gions were conventional phase transitions, they would de-
pend only on the parameters � and �, but not on the system
size �apart from the usual finite-size effects�. Our simulation
results therefore suggest that the transitions between the dif-
ferent regions are not real phase transitions but smooth cross-
overs, as the ratio between the system size and other charac-
teristic lengths changes.

In addition to the dependence on the system size, there is
also a dependence on the boundary conditions in some of the
regions. It has been known for a long time that a SOC system
�i.e., �=0� with periodic boundary conditions has only single
topplings after a transient time �6�, while the standard model
�with open boundary conditions� shows the familiar power
laws. In region II, a system with periodic boundary condi-
tions shows only system-wide avalanches and no small ava-
lanches �17�. In contrast, the avalanche-size distributions in
regions III and IV are independent of the boundary condi-
tions �see Fig. 3 �right��. Together with the findings presented
in the previous paragraph, we conclude that the boundary
conditions affect only regions I and II, while the system size
affects regions I–III. The avalanche-size distributions in re-
gion IV depend neither on the system size nor on the bound-
ary conditions.

Before interpreting these findings further, we show snap-
shots of the model in the four regions �see Fig. 4�. The first
picture is taken in region I and is very similar to systems
without disorder, with patches of different sizes and with the
patch size increasing with increasing distance from the
boundaries. However, the inner patches are larger than in the
absence of disorder. In the second picture �region II�, the
boundary layer has become very small, and the inner part is
synchronized. By watching the running simulation on the

FIG. 1. Phase diagram as presented in �17�. Figure courtesy of
N. Mousseau.
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FIG. 2. Normalized size distribution of avalanches for L=64,
�=0.11, and different values of �.
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FIG. 3. �Left� Transition from one type of size distribution of
avalanches to another type with increasing system size. Parameters
are fixed at �� ,��= �0.11,0.020�. For L=32, two simulations were
performed. �Right� Size distribution of avalanches for L=64, �
=0.11, for two different values of �, with open and periodic bound-
ary conditions �BCs�.
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computer screen, one can see that all sites in the inner part
topple during the same avalanches. In the third and fourth
pictures �regions III and IV�, there is a very small boundary
layer surrounding a pattern of patches of some characteristic
size. In contrast to the first picture, the patch size does not
increase with the distance from the boundary. Monitoring the
system during the transient time, one realizes that the patches
in region I are formed starting at the boundary, while the
patches in region IV are formed everywhere at the same
time.

These observations, together with the findings mentioned
above, lead us to the following interpretation of the behavior
of the model. There appear to be two characteristic length
scales �apart from the system size�. The first length scale is
the thickness d of the boundary layer. The boundary layer is
the region where patches are formed from the boundary in-
ward, in the same way as in the model without randomness.
This patch formation is due to the fact that sites at different
distance from the boundary topple a different number of
times, because sites closer to the boundary receive on aver-
age less energy due to the open boundary conditions. The
smaller the toppling difference becomes �i.e., the farther
away from the boundary a site is�, the larger are the patches.
Clearly, this process can continue only as long as the influ-
ence of the boundary on differences in the received energy is
larger than the influence of the quenched randomness. In
region I, this boundary layer spans the entire system, as con-
firmed by the snapshots and by the fact that a system with
periodic boundary conditions has only very small avalanches
and no patchy structure. In region II, the boundary layer is
small, indicated not only by the snapshot but also by the fact
that the small avalanches vanish in a system with periodic
boundary conditions, which is fully synchronized. The tran-

sition from region I to II is thus accompanied by a decrease
of the thickness of the boundary layer from system size to a
value much smaller than the system size.

The second length scale is related to patches in the inner
part of the system. For large noise, the exponential decay of
the avalanche size distribution indicates that the randomness
introduces a characteristic length scale � into the system,
which is the typical extension of the largest avalanches.
Since the sites affected by an avalanche form a patch with
similar energy values, � is also related to the extension of
patches. If we assume that there exists also such a character-
istic scale for smaller randomness �which may be much
larger than the system size�, we can understand the transi-
tions from region II to III and from III to IV: In region II,
randomness is so small that L��. Thus, only one large patch
is visible in the inner part of the system. In region III, we
have L��; several �but not too many� patches are visible,
and the cutoff of the avalanche size appears to be of the order
of the system size. In region IV, we have ��L, and the
characteristic patch size is clearly visible.

We evaluated d and � for those parameter regions, where
these length scales are clearly visible. The thickness d of the
boundary layer was evaluated on the basis of our observation
that the size smax of the largest avalanche is the size of the
inner part of the system. Such an analysis is limited to pa-
rameter values deep in region II, where the inner part is so
large that the avalanche size distribution splits nicely into a
part for the small avalanches and a sharp peak at smax. Thus,
d can be approximated by

d �
L2 − smax

4�L − 1�
. �1�

The simulation results for d are shown in Fig. 5. The left
graph shows the values d obtained as function of � for dif-
ferent �. As can be expected, d increases with increasing �
and decreasing �. The right graph shows those values of �
and � that lead to the same thickness d=2 or 3.5 of the
boundary layer. Also shown is a linear fit, but in particular
the curve for d=3.5 could also be fitted by a power law with
a larger exponent. The curve becomes flatter with increasing
d and moves to the right. We can therefore interpret the
boundary between regions I and II in Fig. 1 as the line in
parameter space where d assumes a fixed value somewhat
larger than 3.5. In principle, d could also be evaluated for
parameter values closer to the boundary to region I or III. For

FIG. 4. Snapshots of systems in the stationary state for L=64
and �=0.11. The disorder strength � is 0.002 and 0.01 �top row�
and 0.018 and 0.03 �bottom row�.
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FIG. 5. Data for the boundary layer thickness d. Left: d as a
function of � for different �. Right: Parameter combinations for
which d=2 or 3.5, indicated by + and �, respectively. The solid
lines are linear fits.
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that purpose, one would have to evaluate the difference be-
tween systems with open and periodic boundary conditions
in a more sophisticated way. This could be done by evaluat-
ing avalanche-size distributions and/or patch sizes as func-
tion of the distance from the boundary, and determining the
distance d beyond which the difference between the distribu-
tions obtained for the two boundary conditions becomes
smaller than some threshold.

When evaluating �, we focused on region IV. We deter-
mined � by the formula

� =�� n�s�s10ds

� n�s�ds 	
1/20

. �2�

By evaluating the tenth moment of the avalanche-size distri-
bution, we obtain a good estimate of the largest avalanche
size; use of other high moments gives similar results. We
compared for some examples the value �2 with the typical
patch size estimated by counting pixels in the snapshots, and
we found good agreement.

Figure 6 shows on the left our results for � as a function

of � for different �. By comparing these data to the
avalanche-size distribution n�s� for decreasing �, we found
that n�s� starts developing a peak at values of � such that �
�L /2. This confirms our above phenomenological argu-
ments that the transition between regions III and IV occurs
when � is of the order of L. The right graph in Fig. 6 shows
parameter combinations for which the avalanche-size distri-
butions n�s� agree with each other, which means that also the
values � agree with each other. Lines of constant � appear to
be a power law with an exponent 0.79 in the �-� plane.
However, this dependence �
�0.79 of lines with fixed �
should not be extrapolated to small �, since � would even-
tually become larger than �, which makes no sense. Our
simulations did not explore that part of parameter space be-
cause simulations for small � and sufficiently large system
sizes take extremely long.

To conclude, we have presented evidence that the “phase
transitions” seen in the OFC model with quenched random-
ness are in fact smooth transitions between regions where the
ratios between the system size, the boundary layer thickness
d, and the noise-dependent correlation length � change.
When d is of the order of the system size L, the model
behaves similarly to one without randomness �region I�;
when d�L��, almost the entire system is synchronized �re-
gion II�; when d�L��, there occur avalanches of all sizes
�region III�; when d���L, the avalanche size distribution
decays exponentially �region IV�. Thus, randomness intro-
duced two length scales into the model but no real phase
transitions. Of course, there still remain some open ques-
tions. We have no proof that � cannot become infinite for
some nonzero value of �. Furthermore, we have not investi-
gated what happens when � becomes of the order of � or
when � becomes very small.
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